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ABSTRACT: Clinical diagnosis has always been dependent on the
efficient immobilization of biomolecules in solid matrices with
preserved activity, but significant developments have taken place in
recent years with the increasing control of molecular architecture in
organized films. Of particular importance is the synergy achieved with
distinct materials such as nanoparticles, antibodies, enzymes, and
other nanostructures, forming structures organized on the nanoscale.
In this review, emphasis will be placed on nanomaterials for
biosensing based on molecular recognition, where the recognition
element may be an enzyme, DNA, RNA, catalytic antibody, aptamer,
and labeled biomolecule. All of these elements may be assembled in
nanostructured films, whose layer-by-layer nature is essential for
combining different properties in the same device. Sensing can be
done with a number of optical, electrical, and electrochemical methods, which may also rely on nanostructures for enhanced
performance, as is the case of reporting nanoparticles in bioelectronics devices. The successful design of such devices requires
investigation of interface properties of functionalized surfaces, for which a variety of experimental and theoretical methods have
been used. Because diagnosis involves the acquisition of large amounts of data, statistical and computational methods are now in
widespread use, and one may envisage an integrated expert system where information from different sources may be mined to
generate the diagnostics.
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1. INTRODUCTION

A variety of tailored materials are now controlled on the
nanoscale for biomedical purposes, including clinical diagnosis.1

The composition and structure of these materials can be
predefined to offer enhanced sensitivity for a given target by
exploiting molecular-recognition interactions,2 with the aim of
making their electrical, magnetic, or optical property very
sensitive to the analyst of interest. The assembly of different
materials in a device is an important requirement for sensing,
which depends on strategies to attach biomolecules or synthetic
materials by physical adsorption or covalent binding. One such
strategy consists of adsorbing nanomaterials and biomolecules in
ultrathin films that functionalize solid substrates or colloidal
particles. This is the reason why methods to investigate
interfaces3 and to produce nanostructured films with control
on the molecular level4 have become increasingly important for
biosensing. Another possibility is the use of nanomaterials in
solutions or dispersions, as in the case of metallic or magnetic

nanoparticles conjugated with biomolecules that are selective to
cancer cells.5

Regardless of the way the biomolecules are assembled in
devices for biosensing and clinical diagnosis, the key concept is
molecular recognition, which is also essential for many biological
processes. Important examples are the specific interaction
between an enzyme and its substrate to catalyze reactions, the
recognition of complementary bases in nucleic acids through
hydrogen bonding to form DNA and RNA, and the interaction
between amino acids and triads of nitrogen bases for forming
proteins. Many of these processes involve supramolecular
systems for which molecular recognition in living beings occurs
mostly at interfaces, such as membrane surfaces, enzyme reaction
sites, or in the inner part of the DNA double helix. Therefore,
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relevant biological recognition processes occur at some kind of
interface.
This review discusses the recent advances in the development

of biosensors produced with materials organized on the
nanoscale, with emphasis on new molecular architectures for
smart devices applied to diagnostics and monitoring health
treatments; it is organized as follows: Section 2 describes a
generic architecture for biosensing in which nanomaterials are
exploited, and the principles of detection are presented in Section
3. A long list of nanomaterials for biosensing and diagnosis is
discussed in Section 4, where examples from the literature are
given to illustrate the capabilities of these nanomaterials. A
special section is devoted to smart devices, particularly,
implantable biosensors. The need to employ statistical and
computational methods to treat the large amounts of data
generated in clinical diagnosis is discussed in Section 6, and final
remarks close the paper in Section 7. It should be stressed that
the coverage of the topic is not comprehensive; considering that
ca. 1400 papers are retrieved in a search in the Web of Science
with the entry “clinical diagnosis” and “nano*”, we found it best
to emphasize contributions for distinct types of nanomaterials.

2. A GENERIC ARCHITECTURE FOR BIOSENSORS
BASED ON NANOMATERIALS FOR CLINICAL
DIAGNOSIS

The architecture of a generic smart biosensor is depicted in
Figure 1, from which one may highlight three essential
components: (i) immobilized biomolecules capable of molecular
recognition, which may be adsorbed on a biocompatible layer,
(ii) signal transducers, and (iii) elements for measuring and
amplifying the signal in addition to treating the data. The list of
possible biomolecules in the molecular recognition zone and of
analytes in the biological environment is immense and could
include, e.g., antibody−antigen, enzyme−substrate, nucleic acids,
and complementary base pairing in DNA.6−9 Another important

ingredient in the biosensor is the so-called biocompatible layer,
for it may also be considered as the matrix for immobilizing the
biomolecules in order to preserve their activity.10 The three most
used methods for assembling nanomaterials for this purpose are
the Langmuir−Blodgett (LB),11,12 the electrostatic layer-by-layer
(LbL),13,14 and the self-assembly monolayer (SAM) techni-
ques,15 all of which allow one to assemble materials in a layer-by-
layer fashion.
The example of biosensor is Figure 1 appears to imply that the

biomolecules should be immobilized on a solid support.
However, other possibilities exist, which include biomolecules
adsorbed on particles (even nanoparticles)16 and nanostructures
that function as reporters.17 Also indicated in Figure 1 is the need
for signal transduction, for which various methods can be used.
These include optical techniques, normally with detection of a
reaction product via absorption spectroscopy18 or with vibra-
tional spectroscopy,19 in addition to imaging techniques,20,21

mass detection,22 surface plasmon resonance (SPR),23 and
electrical measurements.24 With regard to biosensors based on
electrical measurements, perhaps the most widespread are the
electrochemical biosensors in which products from redox
reactions are detected with, e.g., cyclic voltammetry25 or
amperometry.26 Electrical impedance spectroscopy has found
increased use in the past few years and has the potential to
generate low-cost, fast diagnosis. As for the possible integration
with microelectronics, detection may be performed by exploiting
concepts used in field-effect devices.27 In Section 3, we will
discuss the advantages and limitations of these principles of
detection.
One should also stress that the architecture of Figure 1 may be

generalized to include an array of sensors for the detection task,
rather than just one sensing unit as depicted. In fact, sensor arrays
have been extensively explored over the past few years, especially
in conjunction with impedance spectroscopy as principle of
detection.28 The various methods for signal amplification and

Figure 1. Schematic architecture for a biosensor based on molecular recognition.
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data processing, available for other tasks, may be used for
biosensing. In Section 6, we will concentrate on new trends for
data processing, in which artificial intelligence and information
visualization methods are combined to enhance the performance
of biosensors.
2.1. Assembling Nanomaterials. Because molecular

recognition tends to take place at interfaces, biosensing relies
mostly on adsorbed biomolecules in nanostructured films. As
mentioned above, there are three methods that are are the most
popular for this purpose, namely, the LB and LbL techniques and
the SAM monolayers. Their most important features, as far as
biosensing is concerned, are the possible control of molecular
architectures and the mild conditions under which the films are
fabricated.29 The latter is essential for preserving the activity of
the biomolecules, which is probably associated with entrained
water that remains in the films even after drying.
The LB method is based on the transfer of insoluble materials

from monolayers at the air−water interface onto solid supports
that intercept the monolayer vertically.30,31 It was primarily
conceived to produce well-ordered multilayers of lipids,32−34 but
over decades many other types of molecules have been
employed. Its use for biosensing involves immobilization of
proteins, especially enzymes,35 in addition to antibodies36 and
DNA.37 In many cases, the biomolecules are embedded in a lipid
matrix whose role is to preserve bioactivity. Indeed, even though
immobilization can restrict chain mobility and decrease enzyme
activity, in other instances the hydrophobic environment
provided by lipid−enzyme mixed LB films offers a way to better
expose the catalytic site of the enzyme to the analytes, thus
enhancing the catalytic activity.38,39

A typical biosensor based on an LB film is shown schematically
in Figure 2, where a functionalized bilayer should provide a
unique orientation for the recognition sites. In this example, the
lipid bilayer comprises a neoglycolipid with highly fluid
hydrocarbon chains, onto which the immunoglobulin (IgG)
antibody is anchored. Carbohydrate interactions between the
glycan moieties of IgG and the glycolipid headgroup are favored,
in addition to the probable hydrophobic interactions between
fragments of IgG and the lipid moiety of the glycolipid leaflets.
Acetylcholinesterase was coupled to the bilayer by immune
association, and this biosensor was employed to detect thiocoline
via colorimetric methods.40

The LbL technique is complementary to the LB method,
having been conceived for water-soluble materials in contrast to
the insoluble monolayers transferred as LB films. In the LbL

technique, adsorption of multilayers is governed by noncovalent
interactions, especially electrostatic attraction between oppo-
sitely charged species. In the seminal work introducing the LbL
technique, polyelectrolytes were used,13 but this has been
extended to many other materials, which include inorganic
nanoparticles in addition to organic materials (for a review, see
ref 41). With experiments involving such a variety of materials, it
was then found that LbL films could also be built with H-bonding
interactions and other types of noncovalent interactions.42 This
versatility is indeed one of the major advantages of the LbL
method, which may be used to coat any type of support of any
shape, from solid plates to microparticles and nanoparticles.43

Numerous materials in LbL films are used for biosensing,
including carbon nanotubes (CNTs),44 graphene sheets,45 metal
nanoparticles,46 and biomolecules.47 Of particular importance in
this regard is the control of molecular architecture, as exemplified
in the biosensor schematically shown in Figure 3. The main aim
in this specially designed architecture was to provide a friendly
environment for adsorption of glucose oxidase (GOx) in order to
detect glucose at a low potential and with high sensitivity. Also,

Figure 2. Schematic representation of the organized proteo-glycolipidic molecular assembly with oriented recognition sites. The acetylcholinesterase
activity was monitored with colorimetry. Reprinted with permission from ref 40. Copyright 2003 American Chemical Society.

Figure 3. Biosensor especially designed to detect glucose via
determination of H2O2, as indicated in the reaction depicted. Its
architecture is composed of an LbL film deposited onto an ITO
substrate, namely, ITO-(PVS/PAMAM-Au)3@CoHCF-GOx elec-
trode. The gold nanoparticles were incorporated to lead to an increased
current and therefore enhanced sensitivity, and they were coated with
the CoHCF redox mediator in order to allow detection at 0.0 V vs SCE.
The enzyme glucose oxidase (GOx) was immobilized in a friendly
environment obtained with a solution containing BSA and glutaralde-
hyde. Modified with permission from ref 47. Copyright 2006 Elsevier.
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glucose detection was via determination of H2O2 resulting from
the reaction with glucose catalyzed by GOx, from which gluconic
acid was also generated. The catalytic reaction is indicated in the
figure inset. In order to increase sensitivity, gold nanoparticles
were incorporated into dendrimer layers. These nanoparticles
were then coated with a redox mediator, thus allowing detection
at 0.0 V vs SCE (saturated calomel electrode) and avoiding
effects from interferents. As for providing a friendly environment,
GOx was coimmobilized with bovine serum albumin. With
regard to glucose sensing, this is a topic where nanomaterials
show high sensing performance, and products are nearly ready
for commercialization. A detailed evaluation of the sensing
performance in comparison to non-nanomaterial based sensors is
found in ref 48.
Self-assembled monolayers (SAMs) are formed by the

spontaneous chemisorption of a variety of organic molecules
on a surface, which may contain groups such as thiols, amines,
acids, disulfides, and silanes.49 The method has been developed
over decades, following the seminal work by Sagiv in the 1980s.50

One of the many SAM features exploited in biosensing is the
ability to control the interface properties, with multiple tasks
being performed by a single monolayer.51 Other advantages
include the high stability afforded by chemisorption and the
higher control over positioning of biomolecules compared to
that of polymer layers. Indeed, with SAMs, the position and
density of the biomolecules can be controlled both vertically and
laterally, which is not possible with LB or LbL films, for instance.
For biosensing, SAMs are normally functionalized by attaching

ligands, which confers great flexibility for the choice of the
biomolecules to immobilize. Hence, SAMs can be utilized in
enzyme electrodes, in functionalizing the gate in field-effect
devices, in a variety of immunosensors, and for detecting DNA.52

Figure 4 depicts a schematic diagram of SAMs to perform this
latter task.

3. PRINCIPLES OF DETECTION

The choice of the detection method and variants of the
techniques employed are crucial for biosensing, where one

must take into account the properties of the material in the
sensing units and of the analyte. In this section, we highlight
some of the most used methods for biosensing and clinical
diagnosis.

3.1. Electrochemical Detection and Electrodes for
Diagnosis. Electrochemical methods for biosensing are based
on charge-transfer or charge-transport mechanisms, with
changes in Faradaic or capacitive currents being used as a signal
for detection, depending on the characteristics of the recognition
element. Chronoamperometry and voltammetry are the most
common among the Faradaic methods. Another useful
parameter is a change in the electrochemical potential at the
interfacial region. Owing to the variety of electrochemical
methods used in biosensing, it is not practicable to cover them all
here. Instead, we will concentrate on techniques that have been
recently shown to be promising for clinical diagnosis. Emphasis
will be placed on the preparation of electrodes and new insights
into interfacial science.
In the procedures to detect biologically relevant analytes, one

may gain localized electrochemical information with scanning
electrochemical cell microscopy53,54 (SECM), which even allows
one to study the electrocalytic properties of single nanoparticles.
This has been reported by Kleijn and co-workers55 with the
approach shown schematically in Figure 5. A micropipette is
filled with a solution of citrate-gold nanoparticles (AuNPs)
(Figure 5a) with diameters ranging from 10 to 20 nm according
to the TEM image in Figure 5c. The scanning probe moved in
contact with the electrolyte, and AuNPs landed at various
potentials using highly oriented pyrolyticgraphite (HOPG),
where redox reactions occurred, as indicated in Figure 5b. The
carbon-coated TEM grid was also used to obtain information
about nanoscale level measurements of single NPs. The
voltammetric behavior at 200 mV s−1 for the corresponding
single AuNPs with oxidation wave onset potential at 0.8 V in
Figure 5d indicates high sensitivity with low background current.
The SECM technique has been extended to biological molecules,
such as enzymes and DNA.56

Mention should be made of miniaturized systems toward
micro- and nanodevices exploring 0D, 1D, and 2D nanomateri-
als, including carbon nanotubes (CNTs), graphene sheets
(GS),57−59 and metallic nanoparticles.60 Small-size ultramicroe-
lecrodes (UME) have been also produced,61 which have at least
one of their dimensions in micrometers.62 Further developments
took place with nanometer-size materials with nanoelectrodes
down to 100 nm fabricated with electron beam lithography, ion
beam lithography, and photolithography.63,64 With such electro-
des, the ohmic drop (IR) decreased, and they reached enhanced
mass transport, fast kinetics in charge transfer, and high current
density.65,66 There are limitations, however, including a low
current in the range from nano- to femtoamperes67 and effects
from the diffuse double layer in the mass transport of redox
species. Besteman and co-workers68 used single semiconducting
CNTs for biosensing, with glucose oxidase (GOx) attached to
their sidewalls. Still concerning nanodevices, biochips were built
with an indium tin oxide nanowire (ITO-NW) modified with
GOx enzyme,69 as indicated in Figure 6.67 Glucose could be
detected with currents on the order of picoamperes being
measured due to the biocatalytic process. With such small
currents, special precautions had to be taken to identify and
eliminate noise, which was done with numerical methods in
dedicated software. Noise was essentially of thermal origin, in
addition to shot noise. The treatment of the data permitted
complete elimination of high-frequency signals.

Figure 4. Molecular architecture for a DNA biosensor using self-
assembled monolayers. (A) Single-stranded DNA (HS-ssDNA) is
adsorbed on the gold substrate via the thiol end group and backbone/
substrate contacts, thus leading to various adsorption states. (B)
Contacts between the DNA backbone and the substrate are prevented
by forming a mercaptohexanol (MCH) monolayer. HS-ssDNA remains
attached by the thiol end. (C) Hybridization to complementary
oligonucleotides takes place at the end-tethered HS-ssDNA. Reprinted
with permission from ref 51. Copyright 2006 John Wiley & Sons, Inc.
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3.2. Impedance Spectroscopy. Sensors based on impe-
dance spectroscopy are advantageous because this principle of

detection offers a direct, label-free, and referenceless detection
method. They function by applying an external ac electric field in

Figure 5. (a) Experimental setup, including the micropipette to dispense the nanoparticles. (b) Reaction on the substrate. (c) TEM image showing
AuNPs. (d) Cyclic voltammogram taken at 200 mV s−1 for the individual AuNP. Reprinted with permission from ref 55. Copyright 2011 American
Chemical Society.

Figure 6. (a) Artistic representation of the device, with the inset showing the reaction responsible for detection. (b) Several plots of linear voltammetry
are shown for the ITO-NW electrodewith glucose concentrations (blue boxes, 0.0 μmol L−1; dark green boxes, 0.1 μmol L−1; orange boxes, 0.2 μmol
L−1; pink boxes, 0.5 μmol L−1; and light green boxes, 1.0 μmol L−1). (c) SEM image of the NW-ITO deposited on gold microswitches, whose width was
4 μm. A typical signal is illustrated on the right side of the panel along with the mathematical formalism to analyze the signal. Reprinted with permission
from ref 67. Copyright 2011 American Chemical Society.
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the sensing device, whose frequency can be varied to probe
distinct mechanisms of charge storage and transport.70 In
practice, the film-forming dielectric material in the device is
placed between capacitor plates, whose geometry may be varied
at will. In the case of interdigitated electrodes, two pairs of
metallic fingers are evaporated on a solid substrate, e.g., glass or
ceramic plates, in a way that the dielectric material (e.g.,
nanomaterials and/or biomolecules) is deposited in the gaps of
the metallic tracks. The electrical impedance of the electrodes
coated with the film-forming material is highly sensitive to the
interaction with analytes, and this can be used not only for liquid
samples but also for vapors. Impedance spectroscopy can also be
coupled with electrochemical measurements, which is exploited
in field-effect devices, as mentioned below.
3.3. Field-Effect Devices. Because integration with micro-

electronics is a welcome feature for sensors and biosensors, there
has been considerable research into the use of field-effect devices
(FEDs). These devices are silicon-based sensors deriving from
field-effect transistors (FETs), in which the gate electrode is
replaced by an electrolyte solution and a reference electrode. The
most obvious advantages of FEDs are associated with the
possible integration of sensor arrays on a chip, thus allowing one
to fabricate small, low-weight, and low-cost devices.70 Typical
examples of FEDs are the ISFETs (ion-sensitive field-effect
transistors), capacitive EIS (electrolyte-insulator-semiconduc-
tor) sensors, and LAPS (light-addressable potentiometric
sensors),71 whose architectures are shown in Figure 7. These
sensors are sensitive to any electrical interaction at or nearby the
interface between the gate layer and the electrolyte. Upon
inducing changes in the chemical composition of the analyte, one
may modify the electrical surface charge of the FED, thus
modulating the current of the ISFET channel, the capacitance of
EIS, and the photocurrent of LAPS.71 The signal in these sensors
arises from changes in pH or ion concentration, which may result
from an enzymatic reaction or from adsorption of charged
species. Therefore, sensing is made possible with physical
adsorption of macromolecules such as polyelectrolytes, proteins

and DNA, or with the binding of molecules in molecular
recognition mechanisms, including antigen−antibody affinity
reactions and DNA hybridizations.70,71

The integration of nanomaterials and biological systems into
FEDs is suitable for detection of biological species, mainly due to
the size compatibility and the possibility of integration in
microchips. In addition, the electrostatic interactions and charge
transfer, typical of biological processes, may be detected by
electronic nanocircuits.72 This integration has normally been
done with the LbL technique, with which nanoparticles and
nanotubes can be combined with biomolecules in a precisely
controlled fashion. For instance, field-effect sensors containing
LbL films were produced with poly(dimethyldiallylammonium
chloride) (PDDA) immobilized on the gate in conjunction with
SnO2 and SiO2 nanoparticles.

73 Xu et al. reported a biosensor for
detecting lactate with immobilization of MnO2 nanoparticles
alternated with lactate oxidase and PDDA on the gate of an
ISFET.74 The higher sensitivity and improved performance in
detecting lactate were attributed to the nanostructured film
modifying the gate.74 One-dimensional nanomaterials including
nanowires and nanotubes have been reported as gate-modifying
agents for enhanced sensitivity in FET devices. Javey et al.
reported an LbL assembly of nanowires (NW) building blocks
for NW FETs using Ge/Si core−shell NWs as an approach for
3Dmultifunctional electronics.75 A capacitive EIS structure using
LbL films of poly(allylamine hydrochloride) (PAH) and PSS was
reported by Poghossian et al.76 Section 4.2.1 will present an
overview on the use of carbon nanotubes (CNTs) as a platform
for biosensing using FED devices.

3.4. Spectroscopic Methods. A variety of spectroscopic
methods have been applied for sensing, including direct
monitoring of the interaction between an analyte with a sensitive
layer, an indicator dye, or a labeled system.77 In various types of
optical spectroscopy, detection is performed bymeasuring one or
more of the optical properties in the sensing device, namely,
absorbance, reflectance, fluorescence, and vibrational spectra.77

Using optical sensors is advantageous because they do not

Figure 7. (Top) Operation principles for ISFET, EIS and LAPS sensors, from left to right, are shown schematically. (Bottom) Typical signal responses
of the sensors shown in the top of the figure. Modified with permission from ref 71. Copyright 2006 John Wiley & Sons, Inc.
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require a reference signal, suffer no interference from electrical
fields, and are amenable to in vivo clinical and biological
monitoring. Many parameters can thus be monitored, including
catalytic activity and analyte concentration.77 The simplest of
such methods is perhaps colorimetry, where color changes in the
sample are indicative of the analyte to be detected,78,79 as
exemplified by identification of purpurogallin resulting from
oxidation of pyrogallol owing to the enzymatic activity of
horseradish peroxidase (HRP) in the presence of hydrogen
peroxide. This principle of detection was applied in biosensors
containing HRP immobilized either in a phospholipid LB film78

or in a chitosan matrix in LbL films.79

Fluorescence spectroscopy provides a highly sensitive way to
detect several molecules of biological interest, including
polypeptides and labeled molecules.77 Another useful method
for biosensing is fluorescence resonance energy transfer
(FRET),80 which has been used to investigate molecular
interactions due to its sensitivity to distance (typically 10−100
Å). It is based on the radiationless transmission of energy from a
donor to an acceptor molecule. The donor may be a dye or
chromophore that absorbs energy, whereas the acceptor is a
chromophore to which the energy is subsequently transferred,
providing the distance-dependent energy transfer. This mecha-
nism in a donor/acceptor pair leads to a reduction in the donor’s
fluorescence intensity and excited-state lifetime and an increase
in the acceptor’s emission intensity. Time-resolved FRET
immunoassays provide highly sensitive detection of biomarkers
in serum samples, with the possible multiplexed clinical
diagnostics when quantum dots (QDs) of different colors are
used as acceptors.81

The use of two-photon or even multiphoton processes in
sensing is promising for two main reasons. The first is the deeper
penetration in biological tissues provided by the longer light
wavelength involved in these processes. The second reason is
associated with the possible enhanced spatial resolution,
particularly with novel imaging methods. One such example
was presented by Jiang et al.,82 where detection of thrombin on
the picomolar level could be reached with a two-photon sensing
assay. Their strategy is summarized in the scheme in Figure 8,
which shows silver nanoparticles (Ag NPs) coated with a DNA
aptamer, referred to as TBA15. When light is absorbed by the
coated Ag NPs via two-photon processes in the presence of
thrombin, the resulting luminescence is enhanced considerably
because the specific, strong interaction between thrombin and
TBA15 causes aggregation of the nanoparticles.
The ability to provide fingerprint information on target

molecules has been exploited in sensing using vibration
spectroscopy techniques. In this context, SERS (surface
enhanced Raman spectroscopy) was one of the first methods
that made use of “nanostructures” for detection. SERS-based
biosensing has grown in different ways, including patterning to
create biochips.83

3.5. Surface Plasmon Resonance (SPR). SPR is exploited
in biosensing on the basis of measuring adsorption of a given
material on a metallic surface or metal nanoparticle, typically of
gold or silver.84 Such resonance arises from the collective
oscillation of electrons excited by light whose photons match the
natural frequency of surface electrons. High sensitivity may be
achieved because a slight change at the interface, either owing to
changes in refractive index or adsorption of molecules, induces
changes in the SPR signal. Kara et al.85 combined molecularly
imprinted nanoparticles with SPR for detecting chloramphenicol
(CAP) in honey. The nanoparticles were attached onto the SPR

nanosensor surface via temperature-controlled evaporation, with
which CAP could be recognized selectively.
A summary of the properties and features of the five principles

of detection described, as well as their advantages for sensing
application in clinical diagnosis, are presented in Table 1.

4. NANOMATERIALS FOR CLINICAL DIAGNOSIS
4.1. Quantum Dots. Semiconductor nanoparticles (or

quantum dots (QDs)) exhibit unique optical properties such
as size-controlled fluorescence, high quantum yields, narrow
fluorescence spectra, and large Stokes shifts in addition to
stability against photobleaching. These features are particularly
attractive for sensing, as they enable the use of the same materials
with size-dependent characteristics as different labels for
multiplexed analyses.80,81 Furthermore, QDs can be function-
alized with biomolecules, and such hybrids can probe biocatalytic
transformation and recognition events, where detection may be
based on FRET or electron transfer (ET). For instance,
antibody- or nucleic acid-functionalized QDs of variable sizes
have been explored in the multiplexed analysis of pathogens or
DNAs.80,81

The incorporation of biomolecule−QDs nanostructures into
cells may allow for targeting specific intracellular domains, thus
enabling the imaging of biotransformation with nanoscale
precision. This is one of the reasons why QDs are among the
most promising nanomaterials in nanomedicine, not only for
diagnostics but also for imaging, targeted drug delivery, and
photodynamic therapy for cancer;80−82,86,87 Figure 9 schemati-
cally shows these various possibilities in addition to indicating the
relevant features of functionalized QDs. In this specific
illustration, CdSe QDs are coated with a shell or polymer layer
in addition to molecular targets and biomolecules (e.g.,
streptavidin) to warrant stability. Several confinement effects
may take place, such as broad absorption spectra but narrow
fluorescence spectrum, high fluorescence yield, and photo-
stability. Some of the possible applications are also mentioned in
Figure 9.

Figure 8.Working principle for two-photon sensing of thrombin. Silver
nanoparticles (Ag NPs) coated with the DNA aptamer TBA15 are
irradiated, and their photoluminescence is measured. When thrombin is
present in the dispersion, its specific interaction with TBA15 causes the
latter to detach from the Ag NPs. Upon aggregation of Ag NPs, the
luminescence is increased considerably, which then allows thrombin to
be detected optically within the picomolar regime. Reprinted with
permission from ref 82. Copyright 2013 American Chemical Society.
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Semiconductor QDs are increasingly replacing organic dyes as
optical labels for biorecognition events, particularly because the
size-controlled luminescence features of QDs facilitate the design
of FRET pairs. With the suitable properties of QDs, new
possibilities have been created for molecular and cellular imaging
as well as for ultrasensitive bioassays and diagnosis of cancer.
QDs enable detection of hundreds of cancer biomarkers in blood
assays, on cancer tissue biopsies, or as contrast agents for medical
imaging. They have the potential to expand in vitro analysis,
extending it to cellular, tissue, and whole-body multiplexed
cancer biomarker imaging.80−82,86−92

Primary tumors detected with QDs include ovarian, breast,
prostate, and pancreatic cancer.87 Wang et al.93 used QDs with
maximum emission wavelength at 605 nm to detect carbohydrate
antigen 125 (CA125) in ovarian cancer specimens of different
types (fixed cells, tissue sections, and xenograft tumors). The
comparison between QDs and fluorescein isothiocyanate
(FITC) showed that QD signals were brighter, more specific,

and more stable than those of FITC. Nathwani94 synthesized
biocompatible coated QDs using a chemical route with a natural
protein silk fibroin (SF), which were used as fluorescent labels for
bioimaging HEYA8 ovarian cancer cells. For breast cancer,
diagnosis was performed using QDs in biosensors to detect the
human epidermal growth factor receptor (HER2).95 Multicolor
QDs provided quantitative and simultaneous profiling of
multiple biomarkers using intact breast cancer cells and clinical
specimens. Multicolor bioconjugates were used for simultaneous
detection of the five clinically significant tumor markers,
including HER2 (QD-HER2), ER (QD-ER), PR (QD-PR),
EGFR (QD-EGFR), and mTOR (QD-mTOR), in MCF-7 and
BT474 breast cancer cells.96

QD probes conjugated with prostate-specific antigen (PSA)
were investigated as markers for prostate cancer imaging. Gao et
al. achieved sensitive and multicolor fluorescence imaging of
cancer cells under in vivo conditions, with metastatic prostate
cancer being detected as well.96 The superior quality of QDs for

Table 1. Summary of Properties and Advantages for Each Principle of Detection Applied in Sensing for Clinical Diagnosis

electrochemical29 impedance70 field-effect devices71 spectroscopy methods77 SPR84,85

signal based on far-
adaic or capacitive
currents

signal based on changes in
resistance or capacitive
frequencies

signal based on modulation of
current, capacitance, or pho-
tocurrent

signal based on characterization of one or more
optical properties

signal based on the resonance of
photons from light source with
sample’s surface electrons

charge transfer or
transport mecha-
nisms

charge storage or charge
transport

electrical surface charge absorbance, reflectance, fluorescence, and
vibrational spectra

electrons excited by light

large variety of
methods for sens-
ing

label-free and referenceless
detection method

derivate from field-effect tran-
sistors (FETs)

large variety of methods for sensing refractive index or adsorption of mole-
cules for inducing signal detection

diverse options for
working electrodes

high sensitivity for liquid
and vapors samples

possible integration of sensor
arrays in a single chip

no requirement of reference signal, no inter-
ference with electrical fields, and amenable to
in vivo samples

label-free, real-time measurement, ther-
modynamic binding parameters

high sensitivity for
electroactive sam-
ples

suitable for statistical meth-
ods analyses

small, low-weight, and low-cost
devices

high sensitivity to detect several molecules of
biological interest

high sensitivity with slight change at the
interface

Figure 9. Schematic representation of the diverse applications in which quantum dots have been investigated in cancer diagnosis and treatment.
Modified with permission from ref 87. Copyright 2010 Hindawi Publishing Corporation.
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detecting the androgen receptor (AR) and PSA in prostate
cancer cells was also shown by Nie.97,98 Barua and Rege99

developed a new method to identify prostate cancer cells with
different phenotypes by unconjugated QDs whose trafficking
depends on the cell phenotype. Early diagnosis of pancreatic
cancer has been achieved with QDs as nanosensors with the help
of proteins/peptides directed against overexpressed surface
receptors on the cancer cells/tissues.100 Non-cadmium-based
QDs with efficient, nontoxic optical probes for imaging live
pancreatic cancer cells were reported by Yong et al.101 The
bioconjugation with pancreatic cancer specific monoclonal
antibodies, such as anticlaudin 4, and QDs allowed specific in
vitro targeting of pancreatic cancer cell lines, demonstrating
efficient optical imaging. Further development of QDs might
enable their application in detecting and localizing metastasis,
measuring molecular targets quantitatively to facilitate targeted
therapy, tracking drug delivery, and monitoring the efficacy of
therapeutics noninvasively in real time.120−126

4.2. Carbon Materials. 4.2.1. Carbon Nanotubes. Carbon
nanotubes (CNTs) have been investigated due to their
promising mechanical, electrical, and electrochemical properties.
Structurally different from other isotropic forms of carbon,
CNTs can be formed by the rolling process of graphene
sheets.102 In single-walled carbon nanotubes (SWNTs), every
atom is on the surface and therefore even small changes in the
environment can cause drastic changes in their electrical
properties. Their diameters are comparable to the size of single

molecules (e.g., DNA is 1 nm in size), and they are several
micrometers long, thereby providing a convenient interface with
micrometer-scale circuitry. Their all-carbon composition also
provides a natural match to organic molecules. The chemical
functionalization of CNTs103−105 permits enhancing their
solubility and biocompatibility. These features make CNTs
promising for sensing.102,106,107

Semiconducting SWNTs can be used in FETs that operate at
room temperature and under ambient conditions. Their
conductivity changes strongly upon physisorption of gases,
such as oxygen and ammonia. SWNT-based nanosensors can be
fabricated based on a FET layout, where the solid-state gate is
replaced by adsorbed molecules that modulate the nanotube
conductance (electron donors or electron acceptors).102,106

There have been two main types of nanodevices including
NTFETs. The first uses a single carbon nanotube to act as an
electron channel between the source and the drain electrodes.
The second type involves a network of carbon nanotubes serving
as a collective channel between the source and drain. The
analyte−nanotube interaction may have one of two effects. The
first effect involves charge transfer from analyte molecules to the
carbon nanotubes. In the second type of mechanism, the analyte
acts as a scattering potential across the carbon nanotube. The two
mechanisms can be distinguished by taking transistor measure-
ments, because if charge transfer occurs, then the threshold
voltage will become either more positive (electron withdrawing)

Figure 10. (Top) Architectures of a capacitive EIS and a LAPS device, with both being functionalized with a PAMAM/SWNT LbL film and the enzyme
penicillinase. (Middle) Zoomed-in view of the LbL film. (Bottom) ConCap and CC responses are shown for different penicillin concentrations in the
two types of devices: on the left, for a bare EIS and EIS-NT sensors; on the right, the responses refer to a bare LAPS and a LAPS-NT sensor. Modified
with permission from ref 110. Copyright 2010 John Wiley & Sons, Inc.
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or more negative (electron donating). With these features,
NTFET devices are useful for detecting biological species.102,106

Individual CNTs can also be used in electrochemical single
devices,108 leading to a fast, heterogeneous charge transfer.
Electron beam lithography was used to expose a nanometer
surface area, and the CNTs functioned as nanoelectrodes with an
electrochemical current proportional to the exposed area,
reaching 50 pA for a CNT length of 2 μm. Dudin and co-
workers109 employed isolated SWCNTs as templates for
electrodeposition of Au, Pd, and Pt metal nanowires (NWs)
that can be used for sensing.
CNTs have been incorporated in LbL films used in EIS and

LAPS sensors for detecting penicillin G. The capacitive sensor
was functionalized with an LbL film containing polyamidoamine
(PAMAM) dendrimer and SWNT, with the enzyme penicillinase
immobilized atop the film surface.110,111 For both modified EIS
and LAPS devices, the film containing nanotubes enhanced the
sensor performance, with higher sensitivity, more stable signal,
low drift, and fast response time. The influence of this PAMAM/
SWNT−penicillinase film on FED device performance pointed
to the importance of film morphology for signal response. The
PAMAM/SWNT LbL films acted as highly porous membranes
owing to the interpenetration of nanotubes into dendrimer
layers, which facilitated ion permeation from enzymatic reactions
through the film. Furthermore, the LbL film allowed a stronger,
more uniform adsorption of enzymes on the sensor sur-
face.110,143 Figure 10 depicts the schematic representation of a
capacitive EIS structure and a LAPS device functionalized with a

PAMAM/SWNT LbL film and the enzyme penicillinase, as well
as their operating principle.

4.2.2. Graphene. Graphene is a 2D carbon monolayer
arranged in a hexagonal structure with interesting electronic
properties,112 which may be obtained by physical or chemical
exfoliation from bulk graphitic materials or with the growth of
carbon foils over a substrate. For application in sensing and
biosensing,113 the challenges remain for obtaining high-quality
graphene foils with controlled thickness and size,114 studying the
structure of graphene oxide (GO)115,116 and reduced graphene
oxide (rGO),117 and functionalizing their surface.118 In spite of
these remaining challenges, graphene has been used in many
sensing tasks, including for detection of mercury ions,119 specific
genes,120 and DNA,121,122 in which the influence of graphene
layers onto oxidation of DNA bases123 has also been explored.
Graphene has been found to affect the response of the
oxidoreductase enzymes glucose oxidase (GOx),124 horseradish
peroxidase (HRP),125 cytochrome c,126 laccase,127 and bilirubin
oxidase.128 It has also been reported as components in mimetic
devices129 and in FETs and bioFETs where changes in
conductivity occur during detection.130 With nanomanipulation,
nanopores131 and nanochannels132 were sculpted in graphene
using an electron beam, and DNA could be sequenced by passing
through them.

4.3. Nanoparticles. Many of the works on magnetic
nanoparticles dedicated to clinical diagnosis are aimed at
enhancing contrast for magnetic resonance imaging. This is the
case of iron nanoparticles embedded in hybrid micelles made

Figure 11. (a) Procedure for isolation and manipulation of a single magnetic microparticle. (b) Manipulation of a single Fe3O4−PB microparticle in
suspension under an external magnetic field. (c) Chronoamperometry experiment showing the magnetic control of the redox process for Fe3O4−PB
microparticle with the switch-on and -offmodes. Applied potential: 0.12 V. Electrolyte: potassium phosphate buffer 0.1 mol L−1, pH 7.2. Reprinted with
permission from ref 141. Copyright 2013 Elsevier.
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with an amphiphilic block copolymer and a peptide amphi-
phile.133 In addition to being promising for imaging contrast
enhancer, these hybrid micelles could load the anticancer drug
doxorubicin, serving therefore for theranostic applications. A
fluorescence-based sensing method with gold nanoparticles may
provide superior diagnosis capability compared to that of
magnetic resonance imaging. Peng et al.134 detected the activity
of a disintegrin and metalloproteinase with thrombospondin
motif-4 (ADAMTS-4), which is associated with joint diseases
causing cartilage degrading. ADAMTS-4 was detected in the
synovial fluid from knee surgery patients by measuring the
increase in fluorescence intensity of gold nanoparticle probes
obtained with conjugation of the nanoparticles with a FITC-
modified ADAMTS-4-specific peptide (DVQEFRGVTAVIR).
The high sensitivity and selectivity, with a 3-fold increase in
fluorescence reached for only 3.9 pM of ADAMTS-4, made it
possible to detect an acute joint injury in a patient whose MR
images showed no damage to the cartilage.
Magnetic-controlled bioelectrochemical reactions using a

magnetic field were first explored by Willner et al.,135−137

where magnetite particles (Fe3O4) modified with N-(ferroce-
nylmethyl) aminohexanoic acid were employed to mediate
biocatalysis of enzymes.135 A simple approach with two
switchable modes, switch on and switch off, was used to induce
the electrochemical current from an enzymatic reaction.140 The
simultaneous control of biocatalytic reactions with two enzymes
was reported by Katz et al., with GOx and lactate dehydrogenase
(LDH).138 Liang et al. produced a magneto-controlled
bioelectrocatalytic system for glucose oxidation, in which
ferrocene was grafted to the thiol-terminated Fe3O4 nano-
particles via a UV-induced thiolene click reaction.139

The micromanipulation of isolated materials such as single
magnetic particles has also attracted attention owing to the
possible application in diagnostics, as in the case of magnetic
control of electrochemical reactions. For instance, Melo and co-
workers141 reported on micromanipulation of a magnetite
microparticle modified with the redox mediator Prussian Blue
(Fe3O4−PB), with a suspension of Fe3O4−PB microparticles
being collected in a Petri dish using a Pasteur pipette, as indicated
in Figure 11a. The second step was the isolation of the
microparticle for the electrochemical experiments together with
the electrolyte support in a microcapillary (homemade Pasteur
pipet) using an optical microscope. Then, the magnetic-
switchable electrochemistry study was carried out using an
electrochemical microcell with the electrolyte solution contain-
ing the magnetic microparticles deposited drop by drop (volume
of 20 μL) on the surface of a screen-printed electrode (Ø = 4
mm). The magnetic field was applied to the screen-printed
electrode in commutative states with the Fe3O4−PB micro-
particle positioned on the working electrode surface ( switch-on
state) and outside the electrode surface (switch-off state). The
images and current versus time curves for the two states are
shown in Figure 11b. These two commutative states provided a
switchable control of the electrochemical process of PB, which
can be confirmed in the chronoamperometry experiment in
Figure 11c. Indeed, an increase of ca. 40 nA cm−2 in the current
density was observed between the switch-on and -off states.
Gold nanoparticles (AuNPs) can be conjugated with proteins

that have affinity to specific types of cells, thus permitting the
diagnosis of various types of diseases.142 Marangoni et al.143

fabricated AuNPs stabilized in dendrimers, which were then
coated with a layer of jacalin and a fluorescence dye. The main
idea was to exploit the differentiation ability by jacalin toward

leukemic cells K562. Their results illustrated in the images in
Figure 12 indicate that the AuNPs/jacalin nanoconjugates

adhered to human K562 leukemia cells, in contrast to the lack
of interaction with peripheral bloodmononuclear cells (PBMCs)
collected from healthy adults. Such high selectivity is promising
for diagnosing leukemia as well as for imaging cancer cells.

4.4. Biomolecules as Molecular Recognition Elements.
4.4.1. Catalytic Antibodies. Catalytic antibodies, also known as
abzymes or catmabs, are monoclonal antibodies with catalytic
activity. Although found in humans with autoimmune diseases,
such as lupus, they are normally constructed artificially. These
antibodies are candidates for biotechnology, especially for ester
hydrolysis or for manipulating nucleic acids, where properties of
enzymes and antibodies are combined. Enzymes provide a
reaction mechanism with a lower value of activation energy to
reach the transition state than for the corresponding non-
catalyzed reaction. Therefore, antibodies able to stabilize the
energy of an intermediate state, chemically changing the antigen
after the process, behave as enzymes. They can be used in
biosensors to identify chemical and biological agents, in addition
to therapeutic applications.
In sensing and diagnosis, catalytic antibodies have been used to

hydrolyze benzoyl ester from cocaine144 in an approach to
destroy cocaine prior to its absorption into the brain by depleting
and inactivating available antibodies. Catalytic antibodies have
also served for the oxidative degradation of nicotine145 and
reactive immunization to activate prodrug.146 Mu et al.147

obtained phage antibodies with glutathione peroxidase (GPX)-
binding site by enzyme-linked immunosorbent assay (ELISA)
analysis. They used four rounds of selection against three haptens
based on esters and then tested the device as a sensor using SPR.
A gold layer was modified by dithiodiglycolic acid (DDA), and
the haptens were attached to DDA by self-assembling to form a
biosensor membrane that interacted specifically with the
corresponding antibodies. It was claimed that the GPX activity
was more rapid and simple than conventional ELISA analysis.
Blackburn et al.148 developed a prototype potentiometric

biosensor in which a micro-pH electrode was modified with a
catalytic antibody that catalyzes the hydrolysis of phenyl acetate,

Figure 12. Optical and fluorescence microscopy images taken after 3 h
of incubation of the AuNPs/jacalin nanoconjugates into cultured K562
leukemia cells (a, b) and PBMCs (c, d). Note the strong adhesion to
K562, clearly indicated in the fluorescence image in panel b in contrast
to the lack of affinity toward PBMCs in panel d. The magnification in all
images was 40×. Reprinted with permission from ref 143. Copyright
2013 Elsevier.
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producing hydrogen ions to be monitored by the electrode. Yang
et al.149 showed that ibuprofen ester could be monitored by
catalytic antibodies in water-miscible organic solvents. The
hydrolysis with dimethylformamide had twice the catalytic
efficiency for the buffer solution and therefore catalytic
antibodies may act as the molecular recognition element in
biosensors with tailored properties.
4.4.2. DNA, RNA, and Nucleic Acids. Manipulation of

antibodies may be problematic in diagnosis owing to stability,
which prompted researchers to consider nucleic acid aptamers as
alternatives for molecular recognition.150 These aptamers are
made from short strands of DNA or RNA, e.g., with the DNA
double helix being broken to form a single-strand DNA (ssDNA)
(e.g., under higher pH and temperature).151 The reannealing of
DNA structure forming the double helix through hybridization is
the basis for specific gene identification in biosensing
devices.151,152 Alternatively, nucleic acid can be immobilized
onto a solid surface for recognizing DNA with a specific
sequence.153 The first DNA biosensor was published in 1993
using a reversible electroactive cobalt complex for voltammetric
detection of covalently immobilized DNA.154 Since then, other
principles of detection have been used, including optical,155

piezoelectric,156 electrical,157 and electrochemical measure-
ments.158,159

DNA biosensors have been obtained with several methods of
immobilization160,161 and in conjunction with other nanoma-
terials.121,162,163 In electrochemical sensors, the signal was
maximized with silver nanoparticles (AgNPs)164,165 or gold
nanoparticles (AuNPs),163,166 especially in cases where AuNPs
were capable of improving DNA loading.167 AuNPs could be
coated with ferrocene and were selective for oligonucleotides and
polynucleotides.168 Other nanomaterials used in DNA bio-
sensors are CNTs and graphene.169 Electrodes were coated with
functionalized multiwalled carbon nanotubes (MWCNTs) to
enhance the kinetics of charge transfer between the electrode and
daunomicyn to detect the complementary oligonucleotide with
concentrations down to 1 × 10−10 mol L−1.162 Metallic
nanoparticles and CNTs have also been combined in DNA
biosensors, in some cases in a polymer matrix.164,165,170

4.4.3. Enzymes and Other Proteins. Enzymes have been
applied for many years in clinical diagnosis. Glucose oxidase
(GOx) was one of the first to be used, perhaps because glucose
concentration is a crucial indicator in endocrine metabolic
disorders, including diabetes. Under normal physiological
conditions, glucose concentration fluctuates within 110 ± 25
mg dL−1 (around 6 μM), whereas diabetics may reach 360 mg
dL−1 (20 μM) or higher.171 Biosensors functioning for these
ranges are important to control glucose concentration in the
blood of patients, both in hospitals as well as in their homes. The
first widely commercialized biosensor was for glucose
detection.172 Peroxidases are also extensively used in bio-
sensors,173 including in cases where a more sophisticated
molecular architecture had to be created out of nanomaterials.
For instance, a magnetic-controlled noncompetitive enzyme-
linked voltammetric immunoassay was proposed based on the
immunoaffinity reaction between horseradish peroxidase immo-
bilized with carcinoembryonic antigen functionalized with
magnetic CoFe2SO4 nanoparticles.174 With this architecture,
the active center of the enzyme was partially inhibited by the
antigen−antibody complex, which decreased the level of
peroxide reduction.
The importance of molecular architecture has been shown

repeatedly in biosensors made with enzymes immobilized in

nanostructured films.175 Such biosensors could be made from
cholesterol oxidase176,177 to detect cholesterol, from uri-
case178,179 to detect uric acid, from urease to detect
urea,39,180−182 and from organophosphorous hydrolase (OPH)
bonded to a fluorescein probe to detect paraoxon. OPH was also
used for sensing paraoxon interacting with LbL films of
chitosan183 and for antibodies interacting with LB films of
viologen and protein-A.184 In biosensors produced with LbL
films, the number of enzyme layers can increase the sensitivity
owing to an increased amount deposited.185,186 In other
instances, it is better to keep the enzyme only on the topmost
layer because the main reactions occur on the surface.47,187 Also
worth mentioning is a nanoscale protein chip prepared with an
etched polystyrene (PS) template, immobilized as LB films, used
for an immunoassay exploring SERS spectra.188

5. IMPLANTABLE AND MULTIPURPOSE BIOSENSORS:
TOWARD SMART DEVICES

The possibility of real-time tracking inside the human body has
opened the way for a large number of applications, which include
implantable biosensors that may serve not only for diagnostics
but also as component of a therapeutic strategy based on
controlled drug delivery. This is what has been referred to as
smart devices in the literature, which may offer continuous
diagnosis, prognosis, and therapeutic management.189 The
development of these smart devices relies heavily on nanoma-
terials, as will be clear in the examples below.
Gastrointestinal bleeding could be monitored in vivo in real

time in pig models using wireless endoscopy,190 as biosensors
were able to detect all events of acute bleeding and a text message
could be sent to the desired phone number. An implantable real-
time sensor able to monitor pressure in the body was obtained
with a soft magnetic material and a permanent magnet.191 When
exposed to a low-frequency ac magnetic field, the soft magnetic
material generated secondary magnetic fields, based on which
stress/strain and pressure sensors could be developed. Such
sensing may be useful for monitoring biomedical implants.
Another important issue in this monitoring is related to ensuring
the proper functioning of the sensors, as exemplified in
implantable biosensors to detect carbohydrates where a statistical
method was used to locate causes of sensor drift.192

Also named smart devices are those operating in multiplex
platforms, as in the array shown in Figure 13 for detecting
pathogens and cancer markers.193−195 The resolution of subtle
electrochemical variations is associated with DNA substrate and
surface morphology, for whichmultiplexed analysis leads tomore
reliable statistics as well as decreased surface variability and
background contribution. With the array in Figure 13, one may
investigate DNA-mediated reduction of metalloproteins.194

The same principle of multiplex analysis was applied to detect
human DNA methyltransferase193 by exploiting the finding that
aberrant methylation by methyltransferases enzymes is asso-
ciated with cancer. Barton and co-workers193 described an
electrochemical assay detecting methyltransferase activity with
DNA-modified electrodes (multiplexed electrodes), as shown in
Figure 14.
The creation of smart devices depends on convergence of

various technologies associated with sensing, actuating, con-
trolled drug delivery, wearable devices, mobile energy sources,
data analysis, robotics, and wireless communications, just to
mention a few. The result from such convergence can be
rewarding in terms of offering minimally intrusive individualized
health services196 in addition to possibly improving the
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performance of the human body and repairing vital biological
functions.

6. STATISTICAL AND COMPUTATIONAL METHODS
FOR DATA ANALYSIS

The concept of expert systems for clinical diagnosis has been
introduced decades ago.197 These expert systems are basically
aimed at emulating what doctors do in their diagnosis but with
enhanced capability provided by a computational system that
takes advantage of two features: the ability to handle a much

larger amount of data and the ability to store much more
information about diseases and symptoms. The prominence
achieved in recent years by the challenges associated with the so-
called “big data” or e-Science (or data-intensive discovery)198

highlights the promise held by expert systems that could now
benefit from a much larger computational capacity than they
could decades ago. The modules for such a system should
comprise (i) modules dedicated to storing various types of data,
(ii) modules for preprocessing and processing data, and (iii) the
diagnosis modules per se. In the first type of module, input data
may come from clinical exams, medical images, clinical reports,
history of the patient, and from other patients.199 The
preprocessing and processing modules must contain statistical
and computational tools for cleaning and formatting the data,
data mining, and visualization.200 The modules for diagnosis per
se may be based on machine learning methods201 and perhaps
include an interface in natural language provided by a language
generation system.202 The computational diagnosis system must
be implemented so as to acquire (and learn) new information
from the present exams and analysis.
While most of the modules mentioned above are not related to

nanomaterials, it is clear that the expert system will rely on data
from sensors, biosensors, and imaging devices, many of which
may be similar to those discussed in this review. Moreover, the
amount of data generated in measurements with state-of-the-art
equipment is already huge and therefore statistical and
computational methods will soon be mandatory for data
analysis.203 This is particularly true for clinical diagnosis owing
to the variability inherent in biological samples, especially when
imaging is involved.
In a visionary paper in 2004, Dermot Diamond204 proposed

ways to connect the molecular world to the digital world, in
which analytical scientists would play an important role in
providing the gateway. Such connection would rely on Internet-
scale sensing and control through wireless sensor networks for
chemo-/biosensing.205 Figure 15 illustrates such concepts with a

Figure 13. (Top) Multiplex device with 16 electrodes divided into four
quadrants. In each electrode on the Au surface a different experimental
condition can be used for investigating metalloprotein electrochemistry,
and this is illustrated schematically (Bottom) where distinct DNA-
bound proteins systems are shown. Reprinted with permission from ref
194. Copyright 2013 American Chemical Society.

Figure 14. (Bottom left) Multiplexed chip used to distinguish between DNA-modified electrodes protected from cutting and those where a restriction
enzyme cuts DNA. The electrodes had recognition sites of amethyltransferase and restriction enzyme (green section of DNA). (Top left) The electrodes
are methylated (red DNA bases) in the presence of active methyltransferases. Because DNAwas protected from cutting, the cyclic voltammograms were
essentially the same, with a signal-on result before (blue trace) and after (red trace) the treatment with the active methyltransferase. (Bottom right) A
signal-off result obtained because of the treatment with the restriction enzyme in the absence of activemethyltransferases (bottom left). In the latter case,
the DNA is cut by the restriction enzyme because it remains unmethylated. Reprinted with permission from ref 193. Copyright 2013 American Chemical
Society.
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flowchart indicating that new types of information would be
input into the whole system by various stakeholders, from
individuals to industry partners and government agencies.
Millions of sensing devices would provide data for applications
that may range from monitoring the environment to health,
including clinical diagnosis. The heart of the proposed strategy is
data mining and control via the Internet, which would amount to
an expert system similar to that described in the paragraph above.
The computational methods for such endeavors encompass

artificial neural networks,206 visualization techniques,207,208 and
machine learning techniques.209 For instance, the level of glucose
in diabetic human subjects has been monitored by measuring the
electric current resulting from the transport of glucose
interacting with glucose oxidase in a hydrogel placed on the
skin surface.210 Owing to the complexity of the signal, the glucose
concentration in the blood could be obtained only with the
machine learning expectation maximization algorithm.210

Another field explored in classification tasks is pattern
recognition using methods from signal processing, such as fast
Fourier transform (FFT), as illustrated recently in human−
machine interfacing where muscle motion is tracked with a
sensor array.211 Similarly, imaging of a patterned chip from a cell
phone camera has been used for point-of-care diagnosis.212

In this review, we emphasize the importance of these methods
for biosensing, with examples from the use of information
visualization (for a review, see ref 203). In many respects, such
use resembles applications from chemometrics213 and multi-
variate data analysis.214 In particular, multidimensional projec-
tions have already been proven to be useful for biosensing, with

data elements from a high-dimension space being mapped on a
2D or 3D plot. In these projections, a measure of similarity/
dissimilarity is defined by a distance function in the high-
dimensional data space. These techniques are related to
dimensionality reduction and multidimensional scaling
(MDS)215 approaches, such as principal component analysis
(PCA)216 and classical scaling.215 A successful distance217

function for biosensing has been the so-called interactive
document map (IDMAP).217 It differs from PCA and MDS
because the placement of the data elements is optimized using a
cost function that tries to minimize the error inherent in
projecting the data onto a low-dimension space, with the aim of
placing similar samples in the original space close to each other in
the projected space. In IDMAP, the nonlinear cost function is
defined as
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where δmin and δmax are the minimum and maximum distances
between the samples, respectively.
Two examples are illustrated here. In the first, impedance

spectroscopy data were projected using the IDMAP218

technique. The data were obtained by immersing a biosensor
made with an antigenic peptide, 24-3, which is capable of
molecular recognition toward anti-p24 antibodies (representing
HIV), where the peptide was immobilized in liposomes in LbL
films.218 Each point in the projection corresponds to the
spectrum for the real component of the electrical impedance,
from 1 Hz to 1 MHz. The projection indicated clear distinction

Figure 15. Flowchart with a proposed strategy to connect the molecular world, represented by the access to sensing devices data, to the digital world.
Data from millions of sensing devices would be input into the system by various types of stakeholders, which would be mined with distinct
computational methods. Also envisaged are control systems to perform specific tasks as feedback to the input sensing data; therefore, the whole system
should also contain actuators. This so-called Internet-scale control can be used in the physical world across many applications, three of which are
represented in the figure. Reprinted with permission from ref 204. Copyright 2004 American Chemical Society.
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between samples with different anti-p24 antibody concentra-
tions, whereas the sample containing the nonspecific anti-HCV
antibody could not be distinguished from the PBS buffer.
In the second example, samples containing varied concen-

trations of glucose or triglycerides could be clearly distinguished,
as indicated in the IDMAP plot of Figure 16. Motivation for this
work came from the interference of one of these analytes in the
determination of the other in real samples for clinical diagnosis.
Each point in the projection corresponds to the spectrum from 1
Hz to 1 MHz, as mentioned for the example above. There are,
however, two important differences. In the optimization
procedure for reaching the best distinguishing ability, Moraes
et al.219 found that a combination of capacitance and loss data

was more efficient than simply using the real or imaginary
component of the electrical impedance. The second, and most
important, difference is that not all of the values for all
frequencies were considered because a feature selection
approach was used.
Optimization via feature selection was performed, in which

only the 10 best frequencies were used, as follows: A technique
referred to as parallel coordinates was employed, where an axis is
associated with each data attribute and used to map its range,
with the axes arranged in parallel on the plane. A polyline
represents a data instance that will cross the attribute axes
according to the value of the corresponding attribute. Figure 17
shows a parallel coordinates plot in which the x axis represents

Figure 16. IDMAP plot for the combined capacitance and loss data for with two sensing units. The latter were fabricated by adsorbing LbL films onto
interdigitated gold electrodes. One of the units contained LbL films with alternating layers of poly(allylamine hydrochloride) (PAH)/glucose oxidase
(GOx), whereas the other had a PAH/lipase LbL film. Each point in the plot represents the spectrumwith 10 selected frequencies, rather than the whole
spectrum. Reprinted with permission from ref 219. Copyright 2012 Elsevier.

Figure 17.Use of the parallel coordinates technique to plot the capacitance and loss data for the two sensing units mentioned in Figure 16. Only the data
of the 10 best frequencies are shown. These frequencies are marked with blue boxes to indicate that they were useful for distinction, according to their
silhouette coefficient. Reprinted with permission ref 219. Copyright 2012 Elsevier.
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the frequency, whereas the y axis brings the normalized
capacitance and loss values. A visual inspection confirms that
the frequencies were suitable for distinction of the various
samples indicated in the inset.
The suitable frequencies in Figure 17 were marked with blue

boxes to mean that the silhouette coefficient203 that assesses the
quality of a data cluster is high. The silhouette metric varies
between −1 and 1, where higher values indicate better quality.
The silhouette coefficient is given by

∑=
−

=

S
n

b a
a b

1 ( )
max( , )i

n
i i

i i
c

1

where ai is the average distance between the ith data point and all
other points of the same cluster and bi is the minimum distance
between the ith data point and the points from the other clusters.
The blue boxes mean that all the frequencies selected have a high
Sc, close to 1. Because scanning the whole data space of cluster
silhouettes is time-consuming, Moraes et al.219 used a genetic
algorithm to automatically identify the best frequencies for
distinction.
The methods from information visualization and artificial

intelligence illustrated in the two examples above are completely
generic and may be extended to any type of data. Indeed,
information visualization has been explored to treat electro-
chemical data from field-effect devices220 and surface-enhanced
Raman scattering spectra for single-molecule detection.221 All of
these examples dealt with localized, lab-based methods, for which
the use of computational methods was already useful. Much
more can be expected if such methods are employed within a
fully fledged expert system for clinical diagnosis, for instance, to
apply therapies based on remotely monitored disease markers.
Then, various other issues will have to be addressed.204 Of crucial
importance are the ethical and moral issues related to the access
of the data stored by individuals, companies, and government
agencies. Although these may be hard-to-solve problems, the
implication of such systems is clear. As Dermot Diamont puts it,
“analytical science will be at the center of the next
communications revolution”.

7. CONCLUDING REMARKS
Advances in materials science, biotechnology, and data
processing have changed the landscape of clinical diagnosis in
recent years. Generally, advances in different areas appear to be
disconnected, especially because the issues addressed for
improving diagnosis belong to very distinct areas. Diagnosis is
obviously related to medicine, but the methodologies on which it
is based are created by developers from an ever increasing
number of fields. In this review, we focused primarily on the
importance of materials science, particularly with nanomaterials,
also including a hint of the convergence of technologies that may
take over with the use of computational methods. The emphasis,
while describing the use of nanomaterials for biosensing, was
placed on the possible control of molecular architectures that is
now available with film fabrication methods and functionaliza-
tion of surfaces. Of particular relevance in this regard is the
understanding of the way nanomaterials, including naturally
occurring biomolecules, function in the nanostructures with
which the biosensors are made. We did not aim at a full coverage
of the literature, for, in addition to being a daunting task, the
reader would likely get lost with an exceedingly long list of
nanomaterials that are now used in clinical diagnosis. Instead, we
tried to highlight the most important classes while also

connecting the contributions in the literature with the variety
of principles of detection for biosensing.
As for the convergence of technologies, we dedicated a whole

section to the prospects of the use of data-intensive discovery and
related methods for clinical diagnosis. This is actually a field that
may develop in so many different ways in the near future. More
than enhancing the capabilities for diagnosis, with these methods
and networks of sensors and biosensors, one may envisage the
digital world being able to control the real world on the
molecular level, as has been anticipated by Diamond.205
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